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Abstract

The perception in a listener of the existence of a “‘virtual” source of sound at a prescribed spatial position can be
produced by ensuring that the acoustic signals at the listener’s ears faithfully replicate those that would be produced by a
“real” source at the same position. When loudspeakers are used to transmit the signals, it is necessary to pass the signals
intended for presentation at the listener’s ears through a matrix of filters that provide the inverse of the matrix of transfer
functions that relates the loudspeaker input signals to the listener’s ear signals. The characteristics of such filter matrices
are profoundly influenced by the conditioning of the matrix to be inverted. This filter design problem is reviewed here by
representing the loudspeakers as simple point monopole sources the head of the listener as a rigid sphere. The case of a
virtual acoustic imaging system that uses two loudspeakers in order to reproduce the signals at the two ears is first
described in some detail and previous work is reviewed. It is confirmed that the time domain response of the reproduced
field is of long duration at frequencies where the inversion problem is ill-conditioned. The influence of the presence of the
listener’s head on this time domain behaviour is also evaluated. The principle is then extended to four input—four output
reproduction systems and the computational model is used to explain some previous experimental observations. Finally,
the conditioning of five input—four output systems is also examined and shown to have some potentially desirable
characteristics.
© 2006 Elsevier Ltd. All rights reserved.

1. Introduction

It is possible, by using a pair of loudspeakers, to produce fluctuating sound pressures at the ears of a listener
that replicate accurately a pair of prescribed sound pressure time histories. The latter might be those that
would be produced by a particular source of sound located at a specified spatial position relative to the
listener. This approach is capable of generating the convincing illusion in the listener of the existence of a
virtual source of sound at the specified spatial position. Unlike conventional stereophony [1], the position of
the virtual source is not primarily restricted to the range of angular positions in the horizontal plane that falls
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between the angular positions of the loudspeakers. This approach, based on ‘“‘cross-talk cancellation”, is
generally attributed to Atal and Schroeder [2], although Bauer [3] had previously investigated a similar
procedure for the reproduction of dummy head recordings. The technique has been further developed by a
number of other authors [4-17] and requires the design of a matrix of filters that operates on a pair of
binaurally recorded signals (or a pair of binaurally synthesised signals) in order to derive the inputs to the two
loudspeakers. This matrix of “‘cross-talk cancellation filters”™ effectively inverts the matrix of transfer functions
relating the loudspeaker input signals to the listener’s ears signals, thus ensuring that the binaurally recorded
signals are faithfully replicated at the ears of the listener.

A noteworthy finding [15-17] was that the illusion in the listener was especially convincing when cross-talk
cancellation was applied whilst using two loudspeakers that subtend a relatively narrow angle (typically ten
degrees) at the position of the listener. This sound reproduction system (dubbed the “Stereo Dipole’) was
found to have highly desirable properties, especially with regard to the robustness of the performance of the
system with respect to the movement of the head of the listener [18]. It was subsequently pointed out by Ward
and Elko [19] that the transfer function matrix to be inverted became ill-conditioned when the path-length
difference between one of the loudspeakers and the two ears of the listener became equal to one half of the
acoustic wavelength. The narrow angular range of the Stereo Dipole thus ensured a well-conditioned inversion
problem over a particularly useful range of frequencies.

This concept was extended by Bauck [20] and by Takeuchi et al. [21-24] the latter introducing the concept of
the “Optimal Source Distribution” by demonstrating that the inversion problem could be made to be well-
conditioned over a very wide range of frequencies by ensuring that the angular span of the loudspeakers
was made to vary (preferably continuously) with frequency. A recent analytical investigation [25] of the
two source—two field point inversion problem showed clearly how the time domain response of the inverse
filters was highly undesirable at the ill-conditioned frequencies, resulting in a sound field with a long duration
in the time domain and a complex wave field which would clearly give a deterioration in the cross-talk
cancellation performance for small movements of the listeners head. The equivalent analysis in the frequency
domain also demonstrated that the spatial extent of cross-talk cancellation was dramatically curtailed at the
ill-conditioned frequencies. The analysis presented previously [25] will be extended here by using a model of
scattering of sound by the head of a listener based on Lord Rayleigh’s analysis of sound interacting with a
rigid sphere [26].

Lord Rayleigh used his analysis of spherical scattering at a single frequency in the development
of his “Duplex Theory” [27] of sound localisation by the human auditory system. He concluded that the
influence of the head at low frequencies (where the wavelength of sound is much larger than the “diameter”
of the head) does little to modify the relative amplitude of the sound at the two ears and therefore the
available cue for localisation must be the inter-aural time difference (ITD) between the signals arriving
at the two ears. By contrast, at higher frequencies (where the acoustic wavelength is comparable to, or
much less than, the head diameter), Lord Rayleigh concluded that the inter-aural level difference (ILD)
must be the dominant cue for localisation. There is an inherent presumption in this paper that Lord Rayleigh’s
Duplex theory is incomplete and that ITDs are indeed significant at high frequencies, at least in so far
as the time differences between the “‘envelopes” of high-frequency carrier signals are detectable by the
auditory system. There is considerable evidence that this is indeed the case as discussed in a recent
review by Hafter and Trahiotis [28]. These authors cite a number of studies that have demonstrated
the detectability of ITDs in the envelope of a modulated tone “even when all of the resulting frequencies are
above the usual dividing line of the Duplex theory”. They also refer to studies showing that ITDs
can be detected in bands of high-frequency noise and single and repeated high-frequency clicks, although
they do point out that “caution must be applied when designing such experiments because it has been shown
that listeners are able to utilise ITDs in the highly attenuated low-frequency skirts of nominally high-frequency
signals”. Further cautionary comments are made in another review presented by Grantham [29] who
cites in particular the work of Wightman and Kistler [30] who concluded that, as far as horizontal
plane localisation is concerned, stimuli with low-frequency content are localised primarily on ITDs and
stimuli without low-frequency content are localised based primarily on ILDs (including pinna cues). It is
interesting to note that this issue does still not appear to have been definitively resolved in the psychoacoustical
literature.
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2. Scattering of sound by a rigid sphere

Here we make use of the classical solution for the scattering of sound from a rigid sphere in order to provide
a reasonable first approximation to the Head Related Transfer Function of the listener. The sound field of a
point monopole source having a complex volume velocity ¢ is given by

_jopege
- dnr

. (1)

where p is the complex acoustic pressure, r is the radial distance of the field point from the source, k = w/cy is
the wavenumber and p, and ¢, are, respectively, the density and sound speed of the medium. Denoting
V' = jwq as the source volume acceleration enables the definition of the frequency response function for free-
field radiation given by
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It is now assumed that this field is radiated by a point source situated relative to a rigid sphere as depicted in
Fig. 1. The method of calculating the scattered field is described, for example, by Kirkeby et al. [17]. The
expression for the pressure produced by the free-field monopole can be expanded in terms of an infinite series
by using well-known series expansions [31] for cos(kr)/kr and sin(kr)/kr. The expression for the free-field
frequency response function relating the acoustic pressure to the volume acceleration of a point monopole
source can be written as
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where the distance p and the angle ¢ are defined in Fig. 1, j,, and n,, are, respectively, the mth-order spherical
Bessel and Neumann functions and the functions P,, denote the Legendre polynomials of mth-order. The
frequency response function relating the scattered field pressure to the volume acceleration of the point
monopole can also be expressed in series form by
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where the coefficients b,, have to be determined, @ denotes the radius of the sphere and only outward going
waves are assumed. Application of the condition of zero normal pressure gradient on the surface of the sphere
shows that the coefficients b, are given by [17]

Jm(kr) = jm(kr)
Jmka) = jm, (ka)’

where the prime denotes differentiation with respect to the argument of the function.

bm = ](2m + 1)];”(](61) (5)
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Fig. 1. The coordinate system used to evaluate the scattering of sound by a rigid sphere.
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The frequency response function associated with the total field may readily be evaluated by using the
MATLAB package, for example, to evaluate a number of terms in the series given by Eq. (4). Rose [32]
describes how the spherical Bessel functions may be related to the standard (cylindrical) Bessel functions that
are available in MATLAB in order to compute the scattered field efficiently. It has been found that the infinite
series given by Eq. (4) converges satisfactorily after about m = [round(ka) + 10] terms. Some examples of the
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Fig. 2. The frequency response function relating the pressure at a number of angular positions on the surface of a rigid sphere of radius
9cm to the volume acceleration of a point monopole source at a distance of 1.5m from the centre of the sphere.
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Fig. 3. The impulse responses associated with the frequency response functions plotted in Fig. 2. The frequency response was computed at
1024 discrete frequencies from 1 Hz to 44.1 kHz before transformation into the discrete time domain at an effective sampling frequency of
44.1kHz.
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total frequency response function computed from the sum C,(jw) of Cy(jw) and Ci(jw) are shown in Fig. 2 for
a range of angular positions on the surface of the sphere relative to the position of the monopole source.

The results of this computation may be transformed into equivalent discrete time impulse responses by first
windowing this continuous function in the frequency domain and then sampling the frequency response
function at N points in the range from ®w = 0 to w,; where the latter denotes an equivalent discrete time
sampling frequency. With the discrete frequency variable being denoted by k (which should not be confused
with the acoustic wavenumber used above), the discrete time impulse response is computed from the inverse
discrete Fourier transform given by

N—1
c(n) = %Z C(k)ej(Znnk)/N, (6)
k=0

where n denotes the discrete time variable. The discrete time impulse responses corresponding to the frequency
response functions of Fig. 2 are shown in Fig. 3. A Hanning window was applied to the frequency response
functions of Fig. 2 before transformation into the discrete time domain.

3. Matrix inversion for cross-talk cancellation

The standard signal processing block diagram associated with the multi-channel filter design problem is
illustrated in Fig. 4. In this case C(k) is the matrix of transfer functions in the discrete frequency domain that
relates the vector of loudspeaker input signals v(k) to the vector of signals w(k) produced at the listeners ears.
It is therefore assumed that w(k) = C(k)v(k). The matrix H, (k) of cross-talk cancellation filters operates on the
vector of (recorded or synthesised) binaural signals u(k) in order to deduce the vector v(k) of loudspeaker input
signals such that v(k) = H,u(k). The signals u(k) could thus be recorded (at the ears of a dummy head for
example) or synthesised by convolving the signal associated with an intended virtual source with a pair of
filters representing the transfer functions from the position of the virtual source to the ears of the listener. The
latter could be, for example, derived from a measured database of Head Related Transfer Functions. The
basic requirement of the cross-talk cancellation matrix is to ensure that the reproduced signals are simply a
delayed version of the binaural signals. That is we wish to ensure that w(k) is made equal to the desired signals
d(k) at the listeners ears that are equal to u(k)e 74 where A represents the delay. It therefore follows that the
requirement is

C(H (k) ~ e71, (7
where I denotes the identity matrix. Thus at each frequency k the solution for the cross-talk cancellation
matrix is in principle given by

H, (k) ~ C™'(k)e 7, (8)

It is interesting to note first the analytical form that this matrix takes when it is assumed that the matrix C(k) is
that associated with an arrangement of two loudspeakers placed symmetrically with respect to a listener. Thus,
assume that

Cp(k) Cc(k)
)= o ol ©)
Cc(k) Cp(k)
Listener
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Binaural ’ j ’ i j
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Fig. 4. The multi-channel signal processing block diagram associated with the cross-talk cancellation problem.
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where Cp(k) and C(k) are, respectively, the frequency responses of the “direct’” and ““cross-talk’ transmission
paths from one of the loudspeakers to the nearest and furthest ear of the listener. The inverse of this matrix is
given by

Cp(k)  —Cc(k)
—Cc(k) Cp(k)

1
Ch(k) — CL(k)

Writing the ratio of the cross-talk to the direct path as C¢(k)/Cp(k) = R(k) shows that this expression can be
written as

C (k)= (10)

1 —Rk)
—R(k) 1

1
Cp(){(1 = R(k)(1 + R(k) }
Now assume as a first approximation that the two transmission paths are governed only by the propagation

delay and amplitude reduction associated with the spherical spreading of sound from a point monopole source
as defined by Eq. (1) above. Thus, for example, if

C (k)= (11)

poefjwrl /co poefjwrz/co
4nr, 4nr,

then we may write R(k) = ge % where g = r,/r; is the ratio of the two path lengths and t = (r, — r)/co is the
difference between the acoustic travel times from one of the loudspeakers to the furthest and nearest ears of
the listener.

It can therefore be deduced that in this simple case, it is in principle possible to build a realisable matrix of
filters in order to accomplish the cross-talk cancellation. The only component that cannot be realised in Eq.
(11) is the term 1/Cp(k). This also clearly illustrates the necessity of the “modelling delay” introduced into the
numerator of the solution for H(k) by the term e 7 since, provided the delay 4 exceeds the delay r| /co then
there is no requirement to implement a “time advance”. The terms R(k) appearing in the numerator of
equation (11) (i.e. in the adjoint matrix) are clearly realisable since they constitute pure delays and the terms
1/(1+ R(k)) and 1/(1 — R(k)) could also be realised in discrete time as recursive filters (since again the
elements associated with R(k) are a pure delay).

Note, however, a potential difficulty with the implementation of the filters defined in Eq. (11). In particular,
note the modulus squared of the filters appearing in the denominator. These can be written as

Cp(k) = Celk) = (12a,b)

1= RK)[ = (1+¢*—2cosar), [1+RI| =(1+g*+2coswr). (13)

Since the ratio g will generally be close to unity, these terms will become small as the frequency w tends to zero
and at frequencies where cos wt = 1 or —1, respectively. This occurs when wt = nm where n is an integer. The
response of the filters specified by Eq. (11) therefore becomes large at these frequencies, the frequency at which
ot = mor f = 1/27 being the “ringing frequency” identified by Kirkeby et al. [16] as being associated with an
undesirable response in the time domain.

4. Tll-conditioning of the inversion problem

As described in detail in the analytical investigation of the two source—two field point inversion problem
[25], the ringing frequency is associated with ill-conditioning of the frequency response function matrix to be
inverted, a complex sound field in the region of the listener’s head in the time domain and an associated
reduction in the spatial extent of cross-talk cancellation. The condition number of the matrix C(k) to be
inverted is defined in terms of the singular value decomposition (SVD) of the matrix that can be written in the
form

C(k) = U(k)Z(k)V" (k), (14)

where X(k) is the diagonal matrix of singular values, U(k) and V(k) are the unitary matrices of left and right
singular vectors, respectively, and the superscript H denotes the Hermitian (complex conjugate) transpose.
The condition number x(C) of the matrix C(k) is given by the ratio of the maximum to minimum singular
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values that comprise the elements of the diagonal matrix X. The significance of the condition number in
dealing with matrix inversion problems is of course well-known [33]. Assuming one determines the
loudspeaker input signals v(k) from the solution for the cross-talk cancellation matrix given by H,(k) =~
C(k)e™ 4, it follows that

v(k) = C™ ' (k)d(k) = C ' (k)u(k)e 4. (15)

It can then be shown that [33] the errors dv(k) in the solution for v(k) are related to the errors 6C(k) in the
specification of the matrix C(k) and the errors dd(k) in the specification of the desired signals d(k) at the
listeners ears by the inequality

8v@o
Vo

In this expression, the symbol || || denotes the 2-norm (which is the sum of the squared elements of a vector or
the square root of the largest singular value of a matrix). The errors in the solution for the loudspeaker input
voltages resulting from other inaccuracies (in recording or synthesising the binaural signals used to specify the
vector d(k) or in measuring the matrix C(k)) can be amplified by the condition number of the matrix to be

<x(C) (16)
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in (a).
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inverted. Large condition numbers can therefore lead to large errors in the solution. As emphasised above, in
the case of the free-field two source—two field point problem large condition numbers are also associated with
“ringing” in the sound field and deterioration in the spatial extent of cross-talk cancellation.

In the case of two loudspeakers placed symmetrically relative to the listener, and again assuming free-field
transfer functions as defined in Eq. (1) above, it can be shown [24,25] that the SVD of the matrix C(k) results

in the following:
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Fig. 6. The condition number of the matrix C(k) is shown in (b) for the geometrical arrangement of sources and listener shown in (a)

where the listeners head is modelled by a rigid sphere.
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1 [1 1
V(k):EL _1} (19)

Fig. 5(b) shows the condition number of C(k) that is given by the ratio of the maximum singular value to the
minimum singular value when the two point sources subtend an angle of 60° at the listener in the particular
geometrical arrangement shown in Fig. 5(a). Note that the condition number is effectively given by the ratio
|1 + R(k)| / ‘1 - R(k)‘. As described in Ref. [25], the peaks in the condition number occur at frequencies where
the path-length difference (r, — ;) either tends to zero or is equal to integer multiples of one half of the
acoustic wavelength. The first maximum in the condition number corresponding to a path-length difference of
one half of an acoustic wavelength and defines the “‘ringing frequency” [16,25]. The effect of narrowing the
transducer span to 10° is also shown in Fig. 5(b), which illustrates that the ringing frequency is pushed much
higher, but also shows that the conditioning problem at low frequencies becomes more severe.

Finally, note that the inverse of the acoustic transfer function matrix can be written in terms of the SVD by
using the unitary properties of the matrices U(k) and V(k) such that

C™ (k) = U=~ (k) V! (), (20)
where the inverse of the matrix of singular values can be written as
Tt 0
1 [1-FRK)]|

71_
=m0

21

1
[1—-R(K)|

This again illustrates the tendency of the filters to ““blow up’ in magnitude in the low-frequency limit and at
the frequencies defined above by Eq. (13).

The presence of the head of the listener will of course modify the conditioning of the system. The effect of
the head of the listener can be estimated by using the model of scattering by a rigid sphere described above.
Here, we assume that the ears of the listener are located at angular positions as illustrated in Fig. 6(a). When
the matrix C(k) is calculated using this model, the resulting condition number as a function of frequency is
plotted in Fig. 6(b) for loudspeaker spans of both 60° and 10°. This demonstrates that the peak at the ringing
frequency is suppressed for a span of 60°, but at a span of 10° the ringing frequency becomes more
pronounced and the condition number becomes higher at low frequencies.

5. Regularised inversion

A well-established technique for dealing with ill-conditioned inversion problems is the use of regularisation.
The solution for the vector v(k) is sought that minimises the sum of the squares of the errors e(k) (equal to
d(k)—w(k)) between the desired signals d(k) at the listeners ears and the reproduced signals w(k), plus a term
vH(k)v(k) equal to the sum of squared loudspeaker input voltages weighted by a factor . The solution [34] to
this optimisation problem is given by the optimal vector of loudspeaker input signals defined by

Vopu(k) = [CH(R)C(k) + B1] ™ CH(k)d (k). (22)

where f is the regularisation parameter. Since d(k) is equal to u(k)e 74, the cross-talk cancellation matrix in

Eq. (7) can be written in terms of the regularised pseudo-inverse matrix [CH(k)C(k) + ﬁl} 71CH(k) such that
H,x(k) = [CH()CK) + 1]~ CH)e 4., (23)

Substitution of the SVD given by Eq. (14) into this solution and use of the unitary properties of U(k) and V(k)
shows that

H,r(k) = V(k) [ZH (k) (k) + I I H U (ke (24)
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Again using for illustrative purposes the free-field two-source two-field point model described above, it follows
that

|14+R(K)]|
H lem ] [1+R(K)|*+5
[ZH(k)=(k) + pI] = (k)_m . |1 R®) (25)

[1—R(k)|*+8

and therefore the presence of the regularisation parameter 1imi2ts the magnitudg of the cross-talk cancellation
filters at the particular frequencies where the terms ’1 + R(k)| and |1 — R(k)| become small.

6. The design of cross-talk cancellation filters

It turns out that the regularised solution given by Eq. (23) provides an extremely convenient practical
technique for designing the cross-talk cancellation matrix in particular and inverse filters generally [35]. The
central problem associated with inverse filter design is that if the transfer function to be inverted (C(k) say) is
non-minimum phase (i.e. has zeros outside the unit circle in the complex z-plane), then the inverse filter
(1/C(k)) will be unstable (since the zeros outside the unit circle become poles of the inverse filter). However, it
can also be demonstrated that poles outside the unit circle can be interpreted as contributing a stable but anti-
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Fig. 7. The (a) impulse response (b) pole-zero map and (c) impulse response of the inverse filter associated with a typical acoustic transfer
function. The transfer function shown relates the pressure at the “furthest ear” to the volume acceleration of one of the sources including
an angle of 60° in the geometrical arrangement shown in Fig. 6(a).
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causal component of the impulse response of the inverse filter. As an example, consider the impulse response
c(n) associated with the transfer function C(k) relating the volume acceleration of a point monopole source to
the pressure at given angular location on the surface of a rigid sphere. The impulse response ¢(n) has been
computed as described above and the corresponding sequence can be described in terms of the z-transform

C(z)=z"9B(z), B@)=by+bz ' +byz 2+ bz 4 4 by_jz=® D, (26a,b)

where g denotes the number of samples delay resulting from the acoustic propagation. The values of the terms
b, are the values of the non-zero terms in the impulse response ¢(n) and N denotes the number of coefficients
used to represent the impulse response (which was chosen here to be 70). The polynomial B(z) can then be
factored into a product of the form

B(z):bo(l —zlz’l)(l —22272)...(1 —ZNZ’I), 27)

where the terms z; denote the zeros of the polynomial B(z). Fig. 7(a) shows the impulse response c(n)
corresponding to one of the acoustic transmission paths associated with the source receiver geometry of Fig.
6(a). The impulse response illustrated is that associated with the path from one of the sources to the furthest
ear with the sources including an angle of 60°. The bulk delay has been removed from the impulse response.
The zeros of the associated polynomial B(z) are shown plotted in the z-plane in Fig. (7b). It is clearly evident
that there are a number of zeros outside the unit circle defined by |z| = 1 and that this representation of the
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transfer function is non-minimum phase. Note also that since the coefficients b, are real then the zeros z; must
either real or appear in complex conjugate pairs.
The inverse of the transfer function B(z) can be expressed as a partial fraction expansion of the form

A A A
1 2 4 N

B (o) = (28)

1 —zz7! + 1 —zpz7! + 1 —zyz 17

where it has been assumed that the poles of this expression are distinct. It can be argued [36], that when the
inverse z-transform is evaluated of each term in this series, the resulting time domain sequence will be
determined by the position of the relevant zero z; relative to the unit circle |z| = 1 in the z-plane. Thus, in the
case of zeros inside the unit circle, it can be shown [36] that the inverse z-transform yields a causal sequence
that decays exponentially in forward time. Conversely, for zeros outside the unit circle, it can be argued that
the inverse z-transform yields an anti-causal sequence that decays in backward time. Finally, zeros that lie on
the unit circle will result in a sequence of infinite duration in forward or backward time. It should also be
noted that the same analysis demonstrates that the closer is the zero to the unit circle, the slower the rate of
decay of the impulse response in either forward or backward time. The impulse response of the inverse filter
B~!(z) that inverts the impulse response of Fig. 7(a) is illustrated in Fig. 7(c). This was evaluated numerically
using the MATLAB package to evaluate the partial fraction expansion. Such a procedure becomes extremely
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difficult for plants of much higher order than the 70 terms used here. However, it was shown by Kirkeby et al.
[35] that the problem of inverting multi-channel non-minimum phase systems is dealt with efficiently by using
the regularised solution for the cross-talk cancellation matrix provided by Eq. (23). The procedure works
entirely in the discrete frequency domain and uses the regularisation parameter f3 to effectively control the rate
of decay of the impulse responses of the inverse filters. The action of the regularisation parameter is to replace
each zero with a pair of zeros that are each further away from the unit circle in the z-plane. It is thus ensured
that the response is contained within a duration that is sufficiently short compared to the length of the discrete
Fourier transform used (whose spectrum of course repeats periodically). The effects of “wrap-around” errors
are thus minimised. Figs. 8—13 show the frequency responses and impulse responses of the matrices of inverse
filters designed to achieve cross-talk cancellation for both geometries of sources (10°and 60°) shown in Fig. 6.
The effect of the variation in regularisation parameter is shown in the frequency responses but only the
impulse responses associated with a specific value of f§ are shown. Also shown is the effectiveness of cross-talk
cancellation in each case as f§ is varied. This is shown with plots of the frequency response functions of the
elements of the control performance matrix given by the product C(k)H,r(k). If we define this matrix as

Pi(k) Pa(k)

Ple) = COOHRK) = | p 1y poiie) |

(29)

then one would expect that perfect cross-talk cancellation would result in unit values of P;(k) and P,,(k) and
zero values of Py,(k) and P,(k). The results in Figs. 813 show the elements of this matrix on a logarithmic
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scale and demonstrate that the reduction in the gain of the cross-talk cancellation filters that is produced by
increasing regularisation results in a deterioration in performance (as one might anticipate). There is obviously
a trade off between ‘““‘control performance’” and ‘“‘control effort” that can be adjusted in a very simple way
through choice of the regularisation parameter.

7. The time domain response of two-channel systems

The significance of the ringing frequency to the form of the sound field can be best illustrated by observing
the behaviour of the system in the time domain. A previous paper [25] illustrated effectively the time domain
response of the free-field two-source two-field point system by computing the source outputs when the signal
desired at one field point (ear) was a short duration pulse whilst the desired signal at the other field point (ear)
was zero. The pulse chosen to illustrate the system response was the Gaussian signal defined by

d(t) = e ™ cos wyt, (30)

that has the Fourier transform

. 1 2 2 2
D(J(l)) — m e—(w—w0)2/4na + e—(w+010) /Ana ) (31)
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Fig. 12. The impulse responses of the inverse filters designed for the 10° source angle shown in the geometry of Fig. (6a). Shown for values
of regularisation parameter = 107°.

The advantage of this waveform is that the centre frequency w, can be chosen to be in a particular frequency
range of interest and the spectral width of this pulse can be controlled by the parameter a. The larger the value
of a chosen, the narrower is the spectrum of the pulse whilst the longer is the duration of the pulse in the time
domain. The pulse also has the minimum product of bandwidth and duration necessary to satisfy the
uncertainty principle [37]. In order to examine the behaviour of systems designed to include the effect of
listener head scattering, the matrix C(k) is first computed from the spherical scattering model and the matrix of
cross-talk cancellation filters is computed using the discrete Fourier transform as described above. The
resulting signals (in discrete time) are then computed by sampling the waveform defined above in order to
define the first element of the vector of binaural sequences u(n), with the second element being set to zero. The
discrete Fourier transform of this sequence is then multiplied with the matrix of frequency responses of the
cross-talk cancellation filters H, (k) in order to deduce the “loudspeaker inputs” v(k). Multiplication of these
by the frequency responses computed from the scattering model described above then yields the net frequency
response at each point in the sound field. An inverse discrete Fourier transform is then applied in order to
produce a series of “snapshots” of the sound field that results as a function of time.

Some examples of the resulting sound fields are shown in Figs. 14 and 15. These figures represent acoustic
compressions as darker areas and rarefactions as lighter. The series of snapshots in Fig. 14 show the result of
the attempting to produce the desired Gaussian pulse at the “left ear’ of the listener and zero signal at the
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Fig. 13. The effectiveness of cross-talk cancellation of the inverse filters designed for the 10° source angle shown in the geometry of
Fig. (6a). The cross-talk cancellation effectiveness are shown for values of regularisation parameter f = 107%, 107> and 0.0005.

“right ear”” when the sources (loudspeakers) are spaced at a span of 60° and when the pulse is centred on the
first ringing frequency of 1.65kHz. Fig. 15 shows the sound field generated when the centre frequency of the
pulse is again at 1.65kHz but when the source span is 10°. The sound field generated is clearly more
“compact” in the time domain. It has also been shown analytically in Ref. [21] that avoidance of the “ringing
frequency” will generate a sound field that will be less prone to error associated with movement of the
listener’s head. These observations may help explain the success of the ““Stereo Dipole” virtual sound imaging
system and also the early observations made by Laurisden (as reported by Heegaard [38]) and observed more
recently by Bauck and Cooper [10].

The general principle, that the time domain response of the reproduced field is of short duration when the
inversion problem is well-conditioned can be extended to the use of other source spans. Fig. 16 shows grey-
scale plots of the condition number of the matrix C(k) as a function of frequency and included angle between
the pair of sources assuming the geometry of Fig. 6(a). Results are shown both with and without the presence
of the rigid sphere. Clearly, the effect of the spherical scattering is to reduce the peaks in the condition number,
but the basic dependence of condition number on loudspeaker span and frequency remains very much as
predicted by the free-field model described in Ref. [25]. It was recognised by Takeuchi et al. [21-24] (and is
implicit in the work of Ward and Elko [19]) that the regions in which the inversion problem becomes well-
conditioned (the light areas in Figs. 16(a) and (b)) suggest that different spans of loudspeaker should be used
in different frequency ranges. Clearly, the best solution to ensure a well-conditioned inversion problem is to
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-
-

Fig. 14. The evolution of the sound field when the desired signals consist of a Gaussian pulse at the “left ear”” of the listener and a zero
signal at the right ear. The geometry is that shown in Fig. 6(a) with the included angle between the sources of 60°. The centre frequency of
the Gaussian pulse is 1.65kHz, which corresponds to the first ringing frequency of the inverse filters.
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Fig. 15. The evolution of the sound field when the desired signals consist of a Gaussian pulse at the ““left ear”” of the listener and a zero
signal at the right ear. The geometry is that shown in Fig. 6(a) with the included angle between the sources of 10°. The centre frequency of
the Gaussian pulse is 1.65 kHz, which lies within a range of frequencies for which the inversion problem is well-conditioned.
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Fig. 16. A grey-scale plot of the condition number of the matrix C(k) when the included angle between the sources is varied in the
geometry of Fig. 6(a). The results for the free-field case are shown in (a) and for the sphere scattering case in (b).

use a distribution of source strength radiating a frequency content that varies continuously with angular span.
This is the so-called “Optimal Source Distribution” [21-24].

Figs. 17-19 show the sound field when the loudspeakers are at angles of 6°, 180° and 32°, respectively. These
are the angles chosen by Takeuchi et al. [21-24] in implementing a three-loudspeaker pair realisation of the
Optimal Source Distribution. In these cases the spectrum of the Gaussian pulse is chosen to be in the range of
low condition number of the matrix C(k). Also for comparison, Fig. 20 shows the form of the sound field when
the pulse is centred on the first ringing frequency associated with the 32° span. Again, the large values of
condition number are associated with an undesirable response in the time domain.
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Fig. 17. The evolution of the sound field when the desired signals consist of a Gaussian pulse at the “left ear”” of the listener and a zero
signal at the right ear. The geometry is that shown in Fig. 6(a) with the included angle between the sources of 6°. The centre frequency of
the Gaussian pulse is 8.5kHz, which lies within a range of frequencies for which the inversion problem is well-conditioned.
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Fig. 18. The evolution of the sound field when the desired signals consist of a Gaussian pulse at the “left ear”” of the listener and a zero
signal at the right ear. The geometry is that shown in Fig. 6(a) with the included angle between the sources of 180°. The centre frequency of
the Gaussian pulse is 350 Hz, which lies within a range of frequencies for which the inversion problem is well-conditioned.
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Fig. 19. The evolution of the sound field when the desired signals consist of a Gaussian pulse at the ““left ear”” of the listener and a zero
signal at the right ear. The geometry is that shown in Fig. 6(a) with the included angle between the sources of 32°. The centre frequency of
the Gaussian pulse is 1.5 kHz, which lies within a range of frequencies for which the inversion problem is well-conditioned.
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Fig. 20. The evolution of the sound field when the desired signals consist of a Gaussian pulse at the “left ear” of the listener and a zero
signal at the right ear. The geometry is that shown in Fig. 6(a) with the included angle between the sources of 32°. The centre frequency of
the Gaussian pulse is 3.11kHz, which lies within a range of frequencies for which the inversion problem is not well-conditioned.



484 P.A. Nelson, J.F.W. Rose | Journal of Sound and Vibration 296 (2006) 461-493

T ———

- 1 S~<
'v" 1 = -~
»” 1 S
P 1 ~~s
’
s Source 1 : Source 2 M
1 ~
1
~ 1 N\
R4 ~ H N
, ~ 1 ’ N
’ . ’ s
’ N \\
¢ N \
,/\ " / Sphere AN
Ay
/ 2 N 9.5 cm \
. Ay
K O’l?a - N Radius \
/ \
'I (723 \‘
H Receiver 2 !
1
1
[) .
' Receiver 1 !
1
1 |
] I
| . I
' Receiver 4 i
1 )
\ 1
\ !
Y [}
) [
\ e ’
\ 4
\ ’ ,\ /
‘\ III I,
\ ’ ’
hS »” . ’
S ’ “~ ’
‘\ ’, ~ ’/
A Y I, ‘\ 4
Q'\-\\ Source 4 —"’;”
\\\ ’/
\~\
N\
(@)
B
o"‘ ! s
1
_@=—— Source | | Source2 ——sp
PR ] 7 So
’ \ 1 ’ N
,t \\ R 1 'I \\
’ ——— e,
i \\/ 30 ! 30 / RN
1 7 N,
\ 1 ’ N
\ 1 4 .
\\ 1 ,I \
\ ! / Sphere
\ ! ’ S
I 9.5cm '\
) .
| Radius \
H \
! \
1
1 \
H Receiver 2 !
1 1
Receiver 1 ~—~—— !
|
1
i
o )
S 17
N§ N
q\ !
-~ I
. !
Receiver 3 “~g

§~~
(b) it TS PSS

Fig. 21. The arrangement of loudspeakers and microphones used in the virtual acoustic imaging system investigated by Kahana et al. [39]
showing (a) the symmetric and (b) the asymmetric loudspeaker arrangements.



P.A. Nelson, J.F.W. Rose | Journal of Sound and Vibration 296 (2006) 461-493 485

70 T T T T

60 1

50 1

30R 1

Condition Number, x(C)

20H 1

10F

0 5 10 15 20
(a) Frequency (kHz)
70 T T T T

50H .

40 -

30H .

Condition Number, x(C)

10F E

0 5 10 15 20
(b) Frequency (kHz)

Fig. 22. Condition numbers of the matrix C(k) associated with the geometry of Fig. 21 when the loudspeaker spans used are (a) those
shown in Figs. 21(a) and (b) those shown in Fig. 21(b).

8. The time domain response of multi-channel systems

Another virtual imaging system that has been found to operate well is that described by Kahana et al. [39].
The general layout of the loudspeakers relative to the listener is illustrated in Fig. 21. The system made use of
an arrangement of two loudspeakers to the front of the listener and two to the rear. A matrix of cross-talk
cancellation filters was designed that operated on the four signals recorded by two pairs of microphones placed
on either side of a rigid sphere, the microphones in each pair being relatively close together compared to the
acoustic wavelength in the range of frequencies of interest. The cross-talk cancellation matrix was designed to
ensure the reproduction of these recorded signals in the region of the ears of the listener. The rationale behind
this design was an attempt to solve the difficulty of “front—back confusion” experienced with two channel
systems. This occurs when small rotations of the listener’s head result in virtual images intended for the rear of



486 P.A. Nelson, J.F.W. Rose | Journal of Sound and Vibration 296 (2006) 461-493

Fig. 23. The evolution of the sound field when the desired signals consist of a Gaussian pulse at the front microphone on the left side of the
listener and a zero signal at the other three microphones. The geometry is that shown in Fig. 21 with an included angle between the front
and rear sources of 90°. The centre frequency of the Gaussian pulse is 1.04 kHz, which lies within a range of frequencies for which the
inversion problem is not well-conditioned.
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Fig. 24. The evolution of the sound field when the desired signals consist of a Gaussian pulse at the front microphone on the left side of the
listener and a zero signal at the other three microphones. The geometry is that shown in Fig. 21 with an included angle between the front
sources of 60° and an included angle between the rear sources of 140°. The centre frequency of the Gaussian pulse is 1.04 kHz, which lies
within a range of frequencies for which the inversion problem is well-conditioned.
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the listener being perceived to the front of the listener at an equivalent “mirrored” angular location. The
motivation for the system design was the replication at the listeners ears of not only the pressure, but also the
pressure gradient in the sound field, on the assumption that correct replication of this quantity would enable
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small movements of the listener’s head whilst still preserving a robust and stable image. The system
implemented by Kahana et al. [39] was found to resolve the front-back ambiguity for the speech signals
recorded in practice, and the basic properties of such a system were subsequently confirmed in subjective
experiments reported by Hill et al. [40]. However, the full characteristics of this system were not thoroughly
explored and it is interesting to re-examine these here.
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Fig. 27. Condition number of the matrix C(k) for four-source arrangement with a 140° rear source span while the front source span varies
between 0° and 180°.
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varies between 0° and 180°.
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The condition number of the matrix C(k) of transfer functions appropriate to the geometry of Fig. 21 is
plotted in Fig. 22 for two choices of loudspeaker layout. The first “symmetric” loudspeaker layout made use
of loudspeaker spans of 90° at both front and rear whilst a second ““‘asymmetric’” arrangement used a span of
60° to the front and a span of 140° to the rear. Fig. 22 shows that the condition number of the symmetric
arrangement becomes particularly large in the region of 1 kHz whilst the asymmetric arrangement produces a
low condition number over a reasonable bandwidth until a significant peak occurs in the condition number at
about 8 kHz. Figs. 23 and 24 illustrate the form of the sound field generated when cross-talk cancellation is
attempted with a Gaussian pulse centred on 1.04 kHz for each of the arrangements of sources. The time
domain response of the symmetric arrangement is far less well-contained than that of the asymmetric
arrangement, the ringing in the sound field being clearly evident at this frequency. It is interesting to note that
Kahana et al. [39] reported that the symmetric arrangement of loudspeakers did not produce good results in
informal listening tests, with images being “localised inside the head”. The main subjective experiments were
therefore undertaken with the asymmetric loudspeaker arrangement and this was found to perform well in
resolving front—back ambiguity.

With the increasing prevalence of five loudspeaker systems, it is also interesting to explore the characteristics
of potential systems that make use of this standard layout together with a specific recording system aimed at
accurate signal reproduction in the region of the listener’s head. One approach is to use the essence of the
approach defined by Kahana et al. [39] but modify the system to make use of an additional loudspeaker to the
front of the listener. One can then use the solution for the cross-talk cancellation matrix that results from
ensuring zero error at the four positions in the reproduced field but whilst using minimum sum of squared
loudspeaker input voltages. The solution of this constrained optimisation problem [34] results in the cross-talk
cancellation matrix given by

H, (k) = C" (k) [C(k)C" (k)] ~leioa, (32)

It is first interesting to observe the influence on the condition number of the matrix C(k) of the introduction of
an additional loudspeaker. The geometry of Fig. 25 has been assumed, with the introduction of a fifth
loudspeaker on the same arc as the other loudspeakers, but placed directly to the front of the listener. Fig. 26
shows the condition number of the matrix C(k) for the four source arrangement with the front source span
fixed at 90° with the rear source span varied between 0°and 180° (Fig. 27). Fig. 28 shows the same plot but
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Fig. 29. Condition number of the matrix C(k) for the five-source arrangement with a 140° rear source span while the front source span
varies between 0° and 180°.
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Fig. 30. The outputs of the five sources in the geometrical arrangement of Fig. 25 as a function of the angular position of a source moved
relative to the sphere upon which the acoustic pressure is recorded in order to define the desired signals. Note that the outputs of the
respective sources are a maximum when the angle of the source of the recorded signals coincides with the angle of the sources used for
reproduction.
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with the addition of the fifth loudspeaker. Clearly several regions of high condition number have been reduced
by the addition of the further loudspeaker. Similarly, Fig. 27 shows the condition number of C(k) as the rear
source span is fixed at 140° whilst the front source span is varied between 0° and 180°, and Fig. 29 shows that
the addition of the further loudspeaker reduces regions of high condition number. It therefore appears from
these considerations that the system developed by Kahana et al. [39] might perhaps be improved upon by the
addition of a further source to the front of the listener. Fig. 30 shows the outputs of the five sources as a
function of the angular position of a source used to generate the four signals recorded on the surface of the
rigid sphere. These outputs were computed following the calculation of the cross-talk cancellation matrix in
accordance with Eq. (32). It is evident from these results that when sound radiated from a particular angular
direction is to be reproduced, then the source closest to that direction produces the dominant output. One
might expect that this is a desirable feature of a multi-channel recording and reproduction system. Note also
that there is left-right symmetry in the results that reflects the symmetry in the loudspeaker arrangement, but
that there is front-back asymmetry in the results that reflects the front—back asymmetry in the loudspeaker
arrangement. These observations may prove useful in the further development of multi-channel recording
techniques suitable for five channel reproduction systems.

9. Conclusions

It has been demonstrated that there is a strong link between the time domain response of a number of
systems for generating virtual acoustic images and the condition number of the matrix of transfer functions
that must be inverted in order to achieve cross-talk cancellation. Although a previous paper [25] demonstrated
this relationship analytically in the free-field two-source/two-field point case, it has been found to hold in a
number of other cases where the influence of the listener’s head is modelled as a rigid sphere. It has been
assumed that the time domain response produced at the “‘ringing frequencies” of the reproduction systems is
psychoacoustically undesirable, although there is not yet incontrovertible experimental evidence to suggest
that this is necessarily the case. It does seem, however, that subjectively successful virtual acoustic imaging
systems exhibit a time domain response of short duration in the frequency bands of successful operation.
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